Science & Technology

Middle School Physical Science

Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences build on the K – 5 ideas and capabilities to allow learners to explain phenomena central to the physical sciences but also to the life sciences and earth and space science. The performance expectations in physical science blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge to explain real world phenomena in the physical, biological, and earth and space sciences. In the physical sciences, performance expectations at the middle school level focus on students developing understanding of several scientific practices. These include developing and using models, planning and conducting investigations, analyzing and interpreting data, using mathematical and computational thinking, and constructing explanations; and to use these practices to demonstrate understanding of the core ideas. Students are also expected to demonstrate understanding of several of engineering practices including design and evaluation.

The performance expectations in PS1: Matter and its Interactions help students to formulate an answer to the question, “How do atomic and molecular interactions explain the properties of matter that we see and feel?” by building understanding of what occurs at the atomic and molecular scale. In middle school, the PS1 Disciplinary Core Idea from the NRC Framework is broken down into two sub-ideas: the structure and properties of matter, and chemical reactions. By the end of middle school, students will be able to apply understanding that pure substances have characteristic physical and chemical properties and are made from a single type of atom or molecule. They will be able to provide molecular level accounts to explain states of matters and changes between states, that chemical reactions involve regrouping of atoms to form new substances, and that atoms rearrange during chemical reactions. Students are also able to apply an understanding of the design and the process of optimization in engineering to chemical reaction systems. The crosscutting concepts of patterns; cause and effect; scale, proportion and quantity; energy and matter; structure and function; interdependence of science, engineering, and technology; and influence of science, engineering and technology on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the PS1 performance expectations, students are expected to demonstrate proficiency in developing and using models, analyzing and interpreting data, designing solutions, and obtaining, evaluating, and communicating information. Students use these scientific and engineering practices to demonstrate understanding of the disciplinary core ideas.

The performance expectations in PS2: Motion and Stability: Forces and Interactions focuses on helping students understand ideas related to why some objects will keep moving, why objects fall to the ground and why some materials are attracted to each other while others are not. Students answer the question, “How can one describe physical interactions between objects and within systems of objects?” At the middle school level, the PS2 Disciplinary Core Idea from the NRC Framework is broken down into two sub-ideas: Forces and Motion and Types of interactions. By the end of middle school, students will be able to apply Newton’s Third Law of Motion to relate forces to explain the motion of objects. Students also apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while others repel. In particular, students will develop understanding that gravitational interactions are always attractive but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are also able to apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of cause and effect; system and system models; stability and change; and the influence of science, engineering, and technology on society and the natural world serve as organizing concepts for these disciplinary core ideas. In the PS2 performance expectations, students are expected to demonstrate proficiency in asking questions, planning and carrying out investigations, and designing solutions, and engaging in argument; and to use these practices to demonstrate understanding of the core ideas.

The performance expectations in PS3: Energy help students formulate an answer to the question, “How can energy be transferred from one object or system to another?” At the middle school level, the PS3 Disciplinary Core Idea from the NRC Framework is broken down into four sub-core ideas: Definitions of Energy, Conservation of Energy and Energy Transfer, the Relationship between Energy and Forces, and Energy in Chemical Process and Everyday Life. Students develop their understanding of important qualitative ideas about energy including that the interactions of objects can be explained and predicted using the concept of transfer of energy from one object or system of objects to another, and the total change of energy in any system is always equal to the total energy transferred into or out of the system. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students will also come to know the difference between energy and temperature, and begin to develop an understanding of the relationship between force and energy. Students are also able to apply an understanding of design to the process of energy transfer. The crosscutting concepts of scale, proportion, and quantity; systems and system models; and energy are called out as organizing concepts for these disciplinary core ideas. The performance expectations in PS3 expect students to demonstrate proficiency in developing and using models, planning investigations, analyzing and interpreting data, and designing solutions, and engaging in argument from evidence; and to use these practices to demonstrate understanding of the core ideas in PS3.

The performance expectations in PS4: Waves and Their Applications in Technologies for Information Transfer help students formulate an answer to the question, “What are the characteristic properties of waves and how can they be used?” At the middle school level, the PS4 Disciplinary Core Idea from the NRC Framework is broken down into Wave Properties, Electromagnetic Radiation, and Information Technologies and Instrumentation. Students are able to describe and predict characteristic properties and behaviors of waves when the waves interact with matter. Students can apply an understanding of waves as a means to send digital information. The crosscutting concepts of patterns and structure and function are used as organizing concepts for these disciplinary core ideas. The performance expectations in PS4 focus on students demonstrating proficiency in developing and using models, using mathematical thinking, and obtaining, evaluating and communicating information; and to use these practices to demonstrate understanding of the core ideas.

Middle School Life Science

Students in middle school develop understanding of key concepts to help them make sense of life science. The ideas build upon students’ science understanding from earlier grades and from the disciplinary core ideas, science and engineering practices, and crosscutting concepts of other experiences with physical and earth sciences. There are four life science disciplinary core ideas in middle school: 1) From Molecules to Organisms: Structures and Processes, 2) Ecosystems: Interactions, Energy, and Dynamics, 3) Heredity: Inheritance and Variation of Traits, 4) Biological Evolution: Unity and Diversity. The performance expectations in middle school blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge across the science disciplines. While the performance expectations in middle school life science couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many science and engineering practices integrated in the performance expectations.

The performance expectations in LS1: From Molecules to Organisms: Structures and Processes help students formulate an answer to the question, “How can one explain the ways cells contribute to the function of living organisms.” The LS1 Disciplinary Core Idea from the NRC Framework is organized into four sub-ideas: Structure and Function, Growth and Development of Organisms, Organization for Matter and Energy Flow in Organisms, and Information Processing. Students can gather information and use this information to support explanations of the structure and function relationship of cells. They can communicate understanding of cell theory. They have a basic understanding of the role of cells in body systems and how those systems work to support the life functions of the organism. The understanding of cells provides a context for the plant process of photosynthesis and the movement of matter and energy needed for the cell. Students can construct an explanation for how environmental and genetic factors affect growth of organisms. They can connect this to the role of animal behaviors in reproduction of animals as well as the dependence of some plants on animal behaviors for their reproduction. Crosscutting concepts of cause and effect, structure and function, and matter and energy are called out as organizing concepts for the core ideas about processes of living organisms.

The performance expectations in LS2: Interactions, Energy, and Dynamics Relationships in Ecosystems help students formulate an answer to the question, “How does a system of living and non-living things operate to meet the needs of the organisms in an ecosystem?” The LS2 Disciplinary Core Idea is divided into three sub-ideas: Interdependent Relationships in Ecosystems; Cycles of Matter and Energy Transfer in Ecosystems; and Ecosystem Dynamics, Functioning, and Resilience. Students can analyze and interpret data, develop models, and construct arguments and demonstrate a deeper understanding of resources and the cycling of matter and the flow of energy in ecosystems. They can also study patterns of the interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on population. They evaluate competing design solutions for maintaining biodiversity and ecosystem services.

The performance expectations in LS3: Heredity: Inheritance and Variation of Traits help students formulate an answer to the question, “How do living organisms pass traits from one generation to the next?” The LS3 Disciplinary Core Idea from the NRC Framework includes two sub-ideas: Inheritance of Traits, and Variation of Traits. Students can use models to describe ways gene mutations and sexual reproduction contribute to genetic variation. Crosscutting concepts of cause and effect and structure and function provide students with a deeper understanding of how gene structure determines differences in the functioning of organisms.

The performance expectations in LS4: Biological Evolution: Unity and Diversity help students formulate an answer to the question, “How do organisms change over time in response to changes in the environment?” The LS4 Disciplinary Core Idea is divided into four sub-ideas: Evidence of Common Ancestry and Diversity, Natural Selection, Adaptation, and Biodiversity and Humans. Students can construct explanations based on evidence to support fundamental understandings of natural selection and evolution. They can use ideas of genetic variation in a population to make sense of organisms surviving and reproducing, hence passing on the traits of the species. They are able to use fossil records and anatomical similarities of the relationships among organisms and species to support their understanding. Crosscutting concepts of patterns and structure and function contribute to the evidence students can use to describe biological evolution.

Middle School Earth and Space Sciences

Students in middle school continue to develop their understanding of the three disciplinary core ideas in the Earth and Space Sciences. The middle school performance expectations in Earth Space Science build on the elementary school ideas and skills and allow middle school students to explain more in-depth phenomena central not only to the earth and space sciences, but to life and physical sciences as well. These performance expectations blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge to explain ideas across the science disciplines. While the performance expectations shown in middle school earth and space science couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices that lead to the performance expectations.

The performance expectations in ESS1: Earth’s Place in the Universe, help students formulate an answer to questions such as: “What is Earth’s place in the Universe, What makes up our solar system and how can the motion of Earth explain seasons and eclipses, and How do people figure out that the Earth and life on Earth have changed through time?” The ESS1 Disciplinary Core Idea from the NRC Framework is broken down into three sub-ideas: the universe and its stars, Earth and the solar system and the history of planet Earth. Students examine the Earth’s place in relation to the solar system, Milky Way galaxy, and universe. There is a strong emphasis on a systems approach, using models of the solar system to explain astronomical and other observations of the cyclic patterns of eclipses and seasons. There is also a strong connection to engineering through the instruments and technologies that have allowed us to explore the objects in our solar system and obtain the data that support the theories that explain the formation and evolution of the universe. Students examine geoscience data in order to understand the processes and events in Earth’s history. The crosscutting concepts of patterns, scale, proportion, and quantity, and systems and systems modeling are called out as organizing concepts for these disciplinary core ideas. In the ESS1 performance expectations, students are expected to demonstrate proficiency in developing and using models, analyzing data, and constructing explanations and designing solutions; and to use these practices to demonstrate understanding of the core ideas.

The performance expectations in ESS2: Earth’s Systems, help students formulate an answer to questions such as: “How do the materials in and on Earth’s crust change over time, How does the movement of tectonic plates impact the surface of Earth, How does water influence weather, circulate in the oceans, and shape Earth’s surface, What factors interact and influence weather, and How have living organisms changed the Earth and how have Earth’s changing conditions impacted living organisms?” The ESS2 Disciplinary Core Idea from the NRC Framework is broken down into five sub-ideas: Earth materials and systems, plate tectonics and large-scale system interactions, the roles of water in Earth’s surface processes, weather and climate, and biogeology. Students understand how Earth’s geosystems operate by modeling the flow of energy and cycling of matter within and among different systems. Students investigate the controlling properties of important materials and construct explanations based on the analysis of real geoscience data. Of special importance in both topics are the ways that geoscience processes provide resources needed by society but also cause natural hazards that present risks to society; both involve technological challenges, for the identification and development of resources. Students develop understanding of the factors that control weather. A systems approach is also important here, examining the feedbacks between systems as energy from the sun is transferred between systems and circulates though the ocean and atmosphere. The crosscutting concepts of patterns, cause and effect, scale proportion and quantity, systems and system models, energy and matter, and stability and change are called out as organizing concepts for these disciplinary core ideas. In the ESS2 performance expectations, students are expected to demonstrate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, and constructing explanations; and to use these practices to demonstrate understanding of the core ideas.

The performance expectations in ESS3: Earth and Human Activity help students formulate an answer to questions such as: “How is the availability of needed natural resources related to naturally occurring processes, How can natural hazards be predicted, How do human activities affect Earth systems, How do we know our global climate is changing?” The ESS3 Disciplinary Core Idea from the NRC Framework is broken down into four sub-ideas: natural resources, natural hazards, human impact on Earth systems, and global climate change. Students understand the ways that human activities impacts Earth’s other systems. Students use many different practices to understand the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts of their development. The crosscutting concepts of patterns, cause and effect, and stability and change are called out as organizing concepts for these disciplinary core ideas. In the ESS3 performance expectations, students are expected to demonstrate proficiency in asking questions, developing and using models, analyzing and interpreting data, constructing explanations and designing solutions and engaging in argument; and to use these practices to demonstrate understanding of the core ideas.